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The phenomena of stochastic resonance �SR� has attracted much attention in the studies of the excitable
systems, in particular, the nervous systems under noise. Recently, an alternative SR condition, called the bona
fide SR, was proposed for the bistable system under noise, based on the notion of the residence time distribu-
tion. As the forcing frequency increases, there exists an optimal resonant frequency. We study the SR in a
stochastic Hodgkin-Huxley neuron, which has an inherent natural frequency in addition to the stochastic time
scale. We have observed two resonant conditions; one between periodic forcing and natural frequencies, and
the other between the periodic forcing and the stochastic frequencies. These resonance conditions show the
bona fide stochastic resonance with multimodality. For comparison, we have studied the bona fide SR in the
stochastic FitzHugh-Nagumo neuron, where, the multimodality is not observed. The differences in the reso-
nance structure of two neuron models are understood in terms of differences in the phase portraits.
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In the last decades, the phenomena of the stochastic reso-
nance �SR� �1� has attracted much attention �2–4� in the stud-
ies of noisy systems. SR is a phenomenon in which the re-
sponses of a nonlinear system to a weak periodic signal are
optimized by suitable noise. In neural systems, the SR means
that a neuron can utilize the environmental noise to detect a
weak signal efficiently and enhance the signal transduction
through it. A number of experiments on various neural sys-
tems have been reported to exhibit such nonlinear phenom-
ena and much theoretical works have attempted to explain
this sensing mechanism through studies of various neural
systems �5–7�.

An alternative SR condition is recently proposed in the
bistable system through the analysis of the residence time
distribution function �8�. They have observed the SR as a
function of the modulation frequency, which is called as the
bona fide stochastic resonance. This resonance is between
the forcing frequency and the stochastic time scale. In com-
parison with the bistable system, the excitable systems in-
cluding neuronal systems possess another important time
scale corresponding to the inherent natural frequency. Thus,
the stochastic neuron under periodic forcing has attracted
much attention because the nonlinear coupling between these
three frequencies may lead to the different resonance phe-
nomena from those found in the bistable system �9,10�. For
example, the parameter dependence of SR in the stochastic
neuron may show a bell-shaped structure with a minimum
near the inherent natural frequency, which has not been ob-
served in the bistable system �10�.

Even though the importance of bona fide stochastic reso-
nance in the stochastic excitable system has been discussed
in numerous works �9�, the bona fide stochastic resonance in
the excitable system has not been studied systematically
through the measure of the strength of peaks in the interspike
interval distribution function �ISIH� as a function of the forc-
ing frequency. In this paper, we study the bona fide stochas-
tic resonance in a stochastic Hodgkin-Huxley �HH� neuron
focusing on the interactions between three frequencies in the
resonance phenomena. We have found intertesting phenom-

ena of multimodality in the bona fide stochastic resonance,
which is caused by two different types of resonance condi-
tions; a noise-independent one between periodic forcing and
natural frequencies and the other noise-dependent one be-
tween periodic forcing and stochastic frequencies. In the
study of the coherence resonance, the stochastic HH neuron
and the stochastic FitzHugh-Nagumo neuron show very dif-
ferent resonance structures under dc current �11,12�, in par-
ticular, due to the rigidity of the firings in the HH neuron.
Likewise, we have studied the difference between the bona-
fide SRs in the FitzHugh-Nagumo and HH neurons. We have
found that they show different resonance structures, which
can be understood through the phase portrait analysis of two
neurons.

The HH neuron, which is derived from the biophysical
analysis of the squid giant axon �13�, shows typical dynam-
ics of a real neuron, the spiking behavior and the refractory
period, and serves as a canonical model for tonically spiking
neurons based on nonlinear conductances of ion channels.
This HH neuron consists of four nonlinear coupled ordinary
differential equations, one for the membrane potential V and
the other three variables m ,n ,h for ion-channel gatings �13�.
The large change of m ,n ,h variables, which are connected to
the opening and closing of relevant ion channels, causes the
neuron to show the rapid change in the membrane potentials,
which is called as the action potential, or the spike. The
membrane potential V is given by

dV

dt
= Iion + Iext + Inoise. �1�

In the above equation, there are three kinds of current affect-
ing the membrane potential dynamics: ionic current Iion, ex-
ternal stimulus current Iext, and noisy current Inoise. The mem-
brane potential can change when two types of ions, the
sodium�Na� ions and the potassium�K� ions, flow through the
channels in the membrane, which produces the ionic current.
All ionic movements across the membrane occur through

PHYSICAL REVIEW E 72, 061906 �2005�

1539-3755/2005/72�6�/061906�8�/$23.00 ©2005 The American Physical Society061906-1

http://dx.doi.org/10.1103/PhysRevE.72.061906


channels permeable to a single ionic species and having two
states; open or closed. The difference between the equilib-
rium potential of an ion and the membrane potential is the
driving force for the ionic flow. The total conductance asso-
ciated with any particular population of the ion channels can
be expressed as the maximal conductance and the fraction of
all channels that are open. The resultant ionic current from
experiments by Hodgkin-Huxley �13� is written as,

Iion = − gNam
3h�V − VNa� − gKn4�V − VK� − gl�V − Vl� ,

�2�

where the constants gNa, gK, and gl are maximal conduc-
tances for sodium, potassium, and leakage currents and VNa,
VK, and Vl are corresponding reversal potentials,

dx

dt
=

x��V� − x

�x�V�
, x = m,n,h . �3�

The parameters x� and �x in Eq. �1� represent the stationary
values and the relaxation times for given membrane potential
V, respectively. Details on these parameter values can be
found in �13–15�.

In this study we take the external stimulus to be time-
dependent sinusoidal current Iext�t�=A0 cos�2�ft�, where A0

is set to be the subthreshold current amplitude and f the
forcing frequency, and t the time in unit of milliseconds�ms�.
The noisy current Inoise= I0��t� represents the noisy compo-

nent of the stimulus in a neuron. Here, I0=1 �A/cm2 is
a unit current and ��t� is a zero mean Ornstein-
Uhlenbeck�OU� process,

�d
d�

dt
= − � + ��t� , �4�

where ���t��=0 and ���t���s��=2D��t−s�. Here, D and �d are
the noise intensity and the correlation time of the OU noise.
In our numerical study, we take �d=2 ms. Numerical integra-
tion of the HH neuron in Eqs. �1� and �3� is carried out with
a fourth order Runge-Kutta algorithm and that of the OU
noise in Eq. �4� with the integral algorithm proposed by Fox
et al. �16� with an integration time step of 0.02 ms.

Typically, neurons show resettable dynamics �3�. The neu-
ron fires when it is excited above a threshold, and then is
reset to the rest state after a refractory period. It has been
well known that a major component of neural information in
the nervous system is coded in the firing times of action
potentials, or spikes �17�. If ti denotes a sequence of spiking
times with action potentials, the quantity Ti= ti− ti−1 repre-
sents the interspike interval between two subsequent spike
events. To characterize the statistical properties of these
spike intervals, an ensemble average of neuronal firing data
is widely used in the form of the interspike interval histo-
gram �ISIH�, in which the time intervals between successive
spikes are assembled into a single histogram. This ISIH of a
stochastic neuron corresponds to the residence time distribu-

FIG. 1. Interspike interval histograms �ISIHs� of a stochastic Hodgkin-Huxley neuron under sinusoidal stimulus for different forcing
frequencies �a� f =30 Hz, �b� f =50 Hz, �c� f =80 Hz, and �d� f =110 Hz. Here, A0=1 �A/cm2 and D=5.
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tion in the bistable system. The ISIH for a stochastic
Hodgkin-Huxley neuron shows a sequence of decaying
peaks as in Fig. 1, and this exponential decay with peaks are
similar to the residence time distribution in the bistable sys-
tem. The maxima in the amplitudes of modes are located at
integer multiples of the stimulus period, and decay, in gen-
eral, for higher harmonics. Note that there are no peaks in
ISIHs for Ti�20 ms in Figs. 1�a�–1�d� due to the existence
of the refractory period, which is different from the residence
time distribution in the bistable system. The strength of the
nth peak in the distribution function N�T� in ISIH is defined
by �8�

Pn = �
Tn−	T0

Tn+	T0

N�T�dT ,

with 0�	

1
4 . The choice of the parameter 	 is found to be

not relevant to our analysis. Here we use 	= 1
4 .

We have calculated the strength of P1 and P2 in the sto-
chastic Hodgkin-Huxley neuron for various noise intensities
and forcing frequencies as shown in Figs. 2 and 3. The reso-
nant peaks in P1 and P2 show different behaviors as the
function of the forcing frequency when the noise intensity
increases. The resonant peak in P1 is located near f =45 Hz
and stays there even when the noise intensity increases as in
Fig. 2.

In Fig. 4�a�, we show an example of neural activities with

two subsequent spikes in 320� t�370 ms and three subse-
quent spikes in 500� t�570 ms that contribute to the P1
peak �the interspike interval is roughly 20 ms�. From the
neural activities in Fig. 4�a�, we can draw phase portraits as
in Figs. 4�b� and 4�c�. The orbits corresponding to fluctua-
tions without spikes are found in the region A �near the rest
state�. On the other hand, the orbits corresponding to the
spikes are the clockwise loop from the phase points near B
with dh /dt�−0.02 to those near C with dh /dt�0.01. The
average time for this clockwise loop from B to C is �Tsp�
�15.93±0.54 ms. The orbits that contribute to the P1 peak
correspond to one from B to the excitable point C without
entering the region A. The time for this clockwise loop is
called as the excitable time �Texc�. At the phase point C, the
neuron can generate another action potential. Thus, the ac-
tion potentials contribute the P1 peak correspond to the
clockwise loops from the phase point B back to B without
entering the region A, which serve as quasistable oscillations.
The time �Texc� is roughly 4 ms, which is nearly constant for
most noise intensities and forcing frequencies explored.
Therefore, the resonance condition is 1 / f ��Tsp�+ �Texc�. The
time �Tsp�+ �Texc� for a loop is roughly 20 ms and it is the
inverse of the natural frequency of the Hodgkin-Huxley neu-
ron, that is, f =50 Hz �10�. The noise-induced transitions
from the phase point in the region A �the rest state� to the
point B �the quasistable oscillation� do not contribute to the
P1 peak at the resonant frequency. That is, this resonance is

FIG. 2. Strength of P1 peaks in the distribution of interspike intervals for different noise intensities of �a� D=2, �b� D=5, �c� D=10, and
�d� D=20. Stimulus current is A0=1 �A/cm2.
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not related to the stochastic time scale of noise-induced
switching, so that the corresponding peak in P1 does not
move as the noise strength changes.

The resonant peaks in P2 show somewhat different behav-
ior, having a strong dependence on the noise intensity. There
is a resonant peak A near f =55 Hz at small noise intensity as
in Fig. 3�a�. This peak is located at a slightly higher fre-
quency than the natural frequency of the Hodgkin-Huxley
neuron. At this resonant frequency, many interspike intervals
are observed in the spike train, which has roughly twice the
inverse of the natural frequency. These interspike intervals
contribute to the P2 peak, that is, this resonant peak A rep-
resents the second harmonic resonance between the natural
frequency and forcing frequency. The resonant frequency for
the peak labeled B increases as the forcing frequency is in-
creased as in Figs. 3�b�–3�d�. This dependence of the reso-
nant frequency on the noise intensity suggests that the sto-
chastic time scale contributes to this resonance.

In order to understand the detailed mechanisms behind
this resonance, the neural activities at the forcing frequency
f =80 Hz are shown in Fig. 5�a� and their corresponding
phase portrait in Fig. 5�b�. We find subsequent action poten-
tials contributing to P2 peaks in 100� t�150 ms and 400
� t�450 ms in Fig. 5�a�. The average time for the spike
�Tsp� in the phase portrait from B to C through a clockwise
loop is �Tsp��15.90±1.49 ms, which is similar to that for
the forcing frequency f =50 Hz. In this case, the trajectories

enter the region A after an action potential and, after a while,
this phase point moves out to the spike initiation point B,
which is the noise-induced transition from the rest state in A
to the spike initiation point B. The condition for a inter-spike
interval contributing to the P2 peak is 2T− �T /2��Tsp+Tk

�2T+ �T /2�, where Tk is the average escape time for the
phase points to move out of the region A. This suggests a
resonance condition, 2T= �Tsp�+ �Tk�. We have measured �Tk�
as a function of the noise intensity, which shows a sharp
decay as in Fig. 6. Thus, when we increase the noise inten-
sity, the resonant frequency also increases because the noise-
induced escape time �Tk� becomes smaller.

The phase relation between the periodic forcing and the
response of the stochastic system is an important issue in the
stochastic resonance �18�. In our study, we have focused our
attention on the shape of the distribution of the phases. For
this purpose, an order parameter is introduced to quantify the
phase relationship between the sinusoidal input current and
the neural responses. Define the phase �k for the kth spike as
the phase of the sinusoidal current at the spike. If the spikes
are well synchronized to the sinusoidal input current, the
phases are similar to each other. In this case, the angular
distribution of �k shows a localized structure. On the other
hand, if the spikes are not well synchronized, the distribution
shows a broadly distributed structure. The distribution of the
phases can be represented by a complex quantity,

FIG. 3. Strength of P2 peaks for different noise intensities of �a� D=2, �b� D=5, �c� D=10, and �d� D=20. Stimulus current is A0

=1 �A/cm2.
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�ei
 = 	
k

Na

ei�k.

Here Na is the number of action potentials for a given time
interval. The magnitude � of the complex quantity can serve

as an order parameter which characterizes the degree of
phase synchronization between the periodic forcing and the
action potentials. Clearly, � vanishes for the uniform distri-
bution without phase synchronization, whereas it shows

FIG. 4. �a� The membrane potential at the noise intensity D=1
and forcing frequency f =50 Hz. �b� The phase portrait in the phase
space of �dV /dt ,dh /dt� for the spike train in �a�. �c� The magnifi-
cation of �b� near �0,0�. Noise induced fluctuations are found near
the region A, where B and C indicate the spike initiation point
�dh /dt=−0.02� and end point �dh /dt=0.01�, respectively.

FIG. 5. �a� The membrane potential at the noise intensity D=1
and forcing frequency f =80 Hz. �b� The phase portrait
�dV /dt ,dh /dt� for the the spike train in �a�. Noise induced fluctua-
tion is in region A, and arrows B, C indicate the action potential
initiation point �dh /dt=−0.02� and end point �dh /dt=0.01�,
respectively.

FIG. 6. The averaged time �Tk� as the function of D.
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sharp peak when there is a strong phase synchronization.
The order parameter have been computed as the function

of the forcing frequency as in Fig. 7�a�, which shows one
peak at small noise intensity in Fig. 7�a�, and two peaks at
strong noise intensity in Figs. 7�b�–7�d�. The first peak A is
located near f �45 Hz and does not change even under the
strong noise influence. This resonant frequency corresponds
to that in the P1 distribution. On the other hand, the resonant
frequency for the second peak B increases as the noise inten-
sity increases, the location of which corresponds to that in
the P2 distribution �compare Fig. 3 with Fig. 7�. The resonant
peaks observed in ISIH correspond to the peaks in the order
parameter analysis. This observation suggests that the bona
fide stochastic resonance in the stochastic Hodgkin-Huxley
neuron is originated from the phase synchronized firings to
the periodic forcing.

As recently observed in �19�, the background noise under-
lying the peaks can lead to an erroneous evaluation of the
strength of the peaks in the ISIH distribution function. In
fact, the intensity of the background in the distribution shows
a resonant behavior even when there is no periodic modula-

tion. The resonance structure in the modified ISIH Ñ after the
subtraction of the background ISIH must be studied to find
out the true resonance by the periodic forcing. We first cal-
culate the ISIH curve for a small forcing amplitude of A0
=0.2 �A/cm2. In this case of weak periodic stimulus, the
background does not depend appreciably on the modulation

amplitude �4,20�. The subtraction between two ISIH curves
for A0=0 �A/cm2 and A0=0.2 �A/cm2 represents synchro-
nous switches corresponding to the periodic forcing. We find
that P̃1 shows a resonant peak nearly at the same frequency
of f =45 Hz as one for P1 and the same is true for P̃2 and P2.
We get similar results for Ñ with A0=0 �A/cm2 and
1 �A/cm2.

For the purpose of the comparison, the background decay
function is calculated from the fitting curves as in �20,21�.
The ISIH in the excitable system has an exponential decay
for a relatively large time interval of roughly T�20 ms and
vanishes in the time interval of T�15 ms because the neu-
ron cannot fire during the refractory period �see Fig. 1�. Here
the exponential decay function is calculated by fitting the
minuma in the ISIH curve when T�20 ms. Ñ is calculated
by subtracting the background exponential decay from the

ISIH curve. Note that Ñ is set to zero when the decay func-
tion is larger than ISIH for small intervals �roughly T

�20 ms�. P̃1 obtained from this curve of Ñ shows a resonant

peak at f =45 Hz and P̃2 shows a resonant structure similar
to one from P2. We find from this comparison study between

resonant structures in N and Ñ that the resonance in N is
caused by the nonlinear interaction between three frequen-
cies and not by the background noise.

For comparison with the results of the HH neuron, we
also studied the bona fide SR in the stochastic FitzHugh-

FIG. 7. Order parameter � for phase synchronization for different noise intensities of �a� D=2, �b� D=5, �c� D=10, and �d� D=20.
Stimulus current is A0=1 �A/cm2.
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Nagumo neuron. The stochastic FitzHugh-Nagumo neuron
model is given by �22–24�,

�
dv
dt

= v�v − a��1 − v� − w + ��t� ,

dw

dt
= v − dw − b − A0 cos�2�ft� , �5�

where ���t��=0 and ���t���s��=2D��t−s�. Here, �=0.005
and a=0.5, d=1.0, and b=0.12. In this model, we have fo-
cused our attention on the structure of the P1 peak and its
dependence on the noise intensity as in Fig. 8�a�. Interest-
ingly, the P1 peak increases as the noise intensity increases,
which is different from the case of the P1 peak in the sto-
chastic HH neuron in Fig. 2, but rather similar to the case of
the the P2 peak in Fig. 3. To understand this difference in
behaviors of P1 peaks, we studied the phase portraits of the
stochastic FitzHugh-Nagumo neuron in Fig. 8�b�. The action
potential corresponds to a counter-clockwise curve starting
from near �v ,w�= �0.4,−0.04� to �0,0� in Fig. 8�b�. The orbit
enters the stable state region near �0.2,−0.04� after a genera-
tion of the action potential and, after a while, it move out to
the spike initiation point, which is the noise-induced transi-
tion from the rest state to an action potential. So the resonant
frequency also increases as the noise intensity increases be-
cause the noise-induced escape time becomes smaller. Even
though both the stochastic HH neuron and the stochastic
FitzHugh-Nagumo neuron have three relevant time scales,
they show different bona-fide SR structures.

In this study, we have observed the bona fide SR in the
stochastic Hodgkin-Huxley neuron as the periodic forcing
frequency is varied. Due to the existence of the inherent
natural frequency in the stochastic Hodgkin-Huxley neuron,
we find two different types of resonances as the forcing fre-
quency is varied. Deterministic resonance occurs between
the forcing frequency and the natural frequency near f
=50 Hz and stochastic resonance occurs between forcing fre-
quency and the stochastic time scale. This multimodal reso-
nance is different from the one in the bistable system with
only one peak. An order parameter is introduced in this paper
to measure the averaged phase synchronization between the
periodic forcing and the spikes. This order parameter also
shows the resonant peaks nearly at the same frequencies ob-
served in strengths of ISIH. This similarity in the resonant
frequencies shows that the bona fide stochastic resonance in
the stochastic Hodgkin-Huxley neuron is originated from the

phase synchronization. Our understanding of resonance phe-
nomena in the stochastic Hodgkin-Huxley neuron may pro-
vide a useful tip for the understanding of the bona fide SR in
many excitable systems.
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